

Hinweise:

Bei verschmutzten Fluiden ist der Vorbau eine Schmutzfängers zu empfehlen.

Bei betriebswarmer Magnetspule (DC) verringert sich die Leistungsaufnahme aus physikalischen Gründen um bis zu 30%.

Achtung

Bei explosionsgeschützten Magneten verringern sich die zulässigen Temperaturbereiche.

Beschreibung:

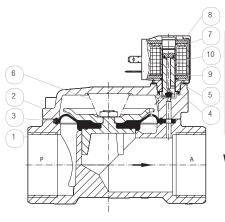
- 2/2-Wegeventil
- Sitzventil mit Membrandichtung

2/2-WEGE MAGNETVENTIL, SERVOGESTEUERTES MEMBRAN-SITZVENTIL FÜR DAMPFANWENDUNGEN

- servogesteuert
- Innengewinde nach ISO228
- Einschaltdauer 100% (VDE0580)
- beliebige Einbaulage, bevorzugt stehender Magnet
- Schließdämpfung
- TÜV-bauart geprüft

Einsatzbereich:

- Viskosität 22mm²/s
- Mediumtemperatur 0°C bis +150°C
- Umgebungstemperatur -10°C bis +60°C
- Betriebsdruck 0,1 bis 10bar
- Mindestdruck muss als Differenzdruck vorhanden sein
- IP65 (mit fachgerecht installierter Gerätesteckdose) nach DIN40050 --> DIN EN 60529
- für Heißwasser und Dampf


Erläuterungen:

Es ist nur eine geringe Magnetkraft notwendig, da durch die Servobohrung die Druckdifferenz genutzt werden kann.

Bitte beachten Sie beim Einbau die **Durchflussrichtung** (Markierung mit Pfeil auf Gehäuse). **Spannungstoleranz +10%** / **-10%** bei maximalem Druck und Umgebungstemperatur.

Andere Spannungen und Spulenleistungen auf Anfrage. Andere Dichtungen auf Anfrage. Im Lieferumfang enthalten ist eine **Gerätesteckdose**. Weitere Gerätesteckdosen finden Sie unter Zubehör und Ersatzteile im Katalog. **Höhere Schutz-klasse** als IP65 auf Anfrage möglich mit speziellen Spulen und Gerätesteckdosen.

Gewinde nach ISO 228: Die Norm beschreibt die Gewindeverbindung eines parallelen Außengewindes mit einem parallelen Innengewinde und wird mit "G" bezeichnet.

Pos.	Bauteil	Messing		Optionales Material
1	Gehäuse	CW617N	Α	-
2	Deckel	CW617N		-
3	Membrane	HNBR	Н	-
4	O-Ring	HNBR		-
5	O-Ring	HNBR		-

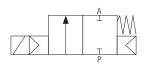
Verschleißteile:

- Pos. 3: Membrane
- · Pos. 6: Druckfeder
- Pos. 7: Magnetspule

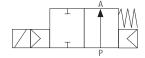
- Pos. 8: Tubus
- Pos. 4: 0-Ring
- Pos. 9: Druckfeder
- Pos. 10: Anker
- Pos. 5: 0-Ring

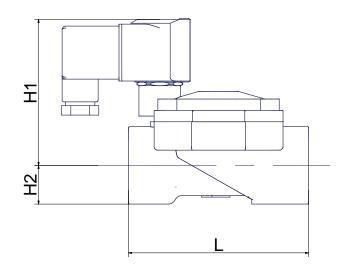
Eine Übersicht über den kompletten Materialschlüssel finden Sie im Katalog zu Beginn des Kapitels der jeweiligen Produktgruppe.

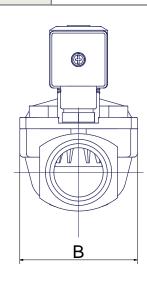
*Bitte auch die abweichende Mediumtemperatur beachten:


• EPDM bis max. 120°C

Optionen:

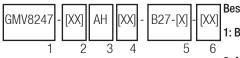

- NO: in Ruhestellung geöffnet bis Nennweite 3mm
- OF: öl- und fettfrei
- CV: Gehäuse chemisch vernickelt
- HA: Handnotbetätigung bis Nennweite 3mm
- NPT: Rohrgewinde ANSI B 1.20.1


GMV8247



Funktion NC (Ventil in Ruhestellung geschlossen)

Funktion NO (Ventil in Ruhestellung geöffnet)



Matchcode	Größe [inch]	Nenn- weite	Betriebsdruck [bar]		L [mm]	H1 [mm]	H2 [mm]	B [mm]	Gewicht [kg]	Kv* [m³/h]	Leistung Spule		
		[mm]	min.	max. AC	max. DC							AC* DC	
GMV8247-02AH80-B27-x	G 1/4	8	0,1	10	10	60	67	11,5	44	0,5	1,7	15/12VA	8W
GMV8247-03AH100-B27-x	G 3/8	10	0,1	10	10	60	67	11,5	44	0,5	2,7	15/12VA	8W
GMV8247-04AH120-B27-x	G 1/2	12	0,1	10	10	67	67	14	44	0,5	3,4	15/12VA	8W
GMV8247-05AH200-B27-x	G 3/4	20	0,1	10	10	80	71,5	16,5	50	0,7	5,5	15/12VA	8W
GMV8247-06AH250-B27-x	G 1	25	0,1	10	10	95	77	20,5	62	1	8,5	15/12VA	8W

^{*}Leistung Spule AC: Angegeben sind die Anzugsleistung und die Halteleistung.

^{*}KV-Wert: Der Nenndurchfluss KVs nach VDI/VDE 2173 gibt die Wassermenge in Kubikmeter pro Stunde an, bei 100% geöffneter Armatur, Δp=1 bar und bei einer Wassertemperatur von 5 bis 30°C.

Bestellhinweise:

1: Basistype: GMV8247

2: Anschlussgröße: 02-06

3: Werkstoffe:

- 1. Stelle: Gehäusewerkstoff: A (Messing)
- 2. Stelle: Dichtung: H (HNBR)
- 4. Stelle: Nennweite in 1/10mm (s. Tabelle)

5: Betätigung:

- Angabe der Spulentype: B27
- Angabe der Spannung:
 - 0: 230V AC
 - 1: 24V DC

Andere Spannungen auf Anfrage.

6: Optionen: siehe "Optionen"

Anforderungen an Ihre Einsatzbedingungen, die nicht im Datenblatt aufgeführt sind, bitte anfragen!

Die Betriebs- und Wartungsanleitung, insbesondere die darin aufgeführten Sicherheitshinweise, sind vor Installation unbedingt zu beachten!

Erwärmung und Leistung von Magnetspulen

Magnetventile sind für Dauerbetrieb (100% ED = Einschaltdauer) ausgelegt. Die Zugkraft einer Magnetspule wird im Wesentlichen von drei Faktoren beeinflusst:

- der Eigenerwärmung
- der Mediumstemperatur
- der Umgebungstemperatur

Magnetspulen sind im Standard ausgelegt für eine maximale Umgebungstemperatur von +60 °C. Diese Angabe gilt für den im jeweiligen Ventildatenblatt angegebenen maximal zulässigen Betriebsdruck, einer Einschaltdauer von 100% und einer Mediumstemperatur von +150 °C.

Bei betriebswarmer Magnetspule (DC) verringert sich die Leistungsaufnahme. Aus physikalischen Gründen um bis zu ca. 30%

